Chapter 9 : Biochemical Assessment of Nutritional Status

Biochemical Assessment

 Provides the most objective and quantitative data on nutritional status (compared to anthropometric, clinical methods, and dietary)

 And <u>detects nutrient deficits</u> long before anthropometric measures are altered and clinical signs and symptoms appear

Biochemical tests

- Static (direct) tests
- Functional (indirect) tests

Static (direct) tests

- Based on measurement of nutrient or it's metabolite in the blood, urine, or body tissues
- E.g :
 - serum measurement of albumin, Ca, or vit A
- Limitations :
 - They often fail to reflect the overall nutrient status of an individual or <u>whether the body as a whole</u> is in a state of nutrient excess or depletion
 - E.g : serum calcium is poor indicator for body's Ca status or bone mineral content

Functional (indirect) test

Based on the idea that

 "the final outcome of a nutrient deficiency and it' biologic importance are not merely a measured level in a tissue or blood, but the failure of one or more physiologic processes that rely on that nutrient for optimal performance"

Functional (indirect) test

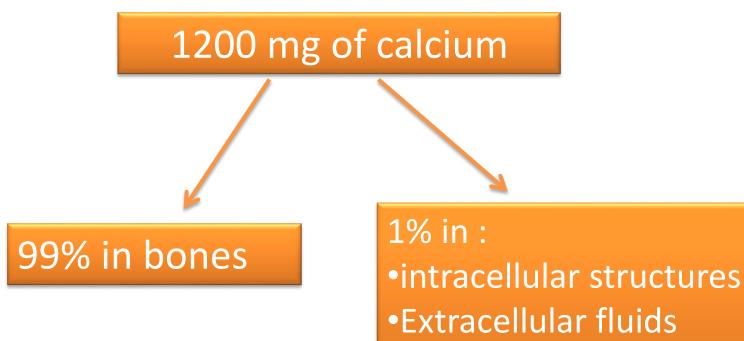
E.g :

- measurement of dark adaptation (assessing vit A status)
- Urinary excretion of xanthouric acid in response to consumption of tryptophan (assesses vit B6 status)

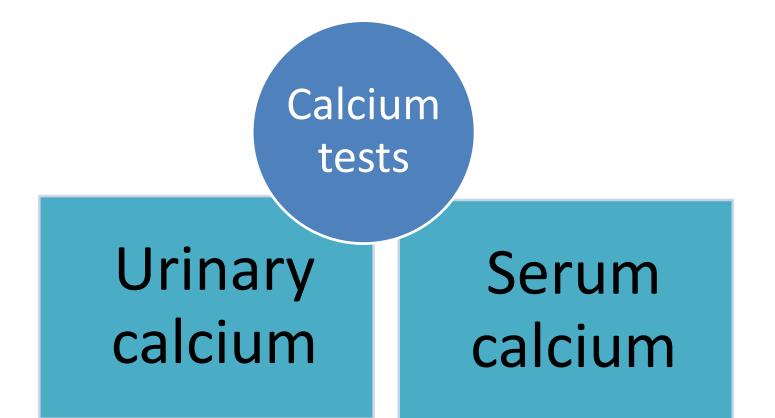
Drawbacks :

Some tests tend to be nonspecific, they may indicate general nutritional status but not allow identification of specific nutrient deficiency

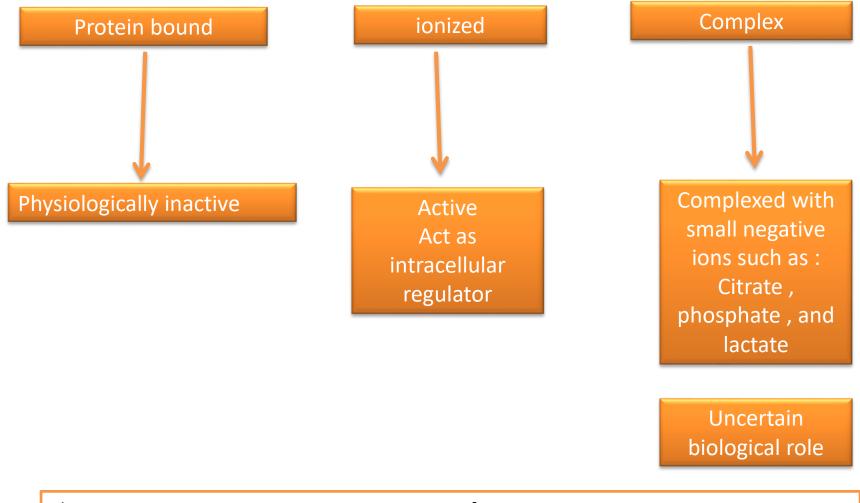
Calcium functions


1. Bone and tooth formation

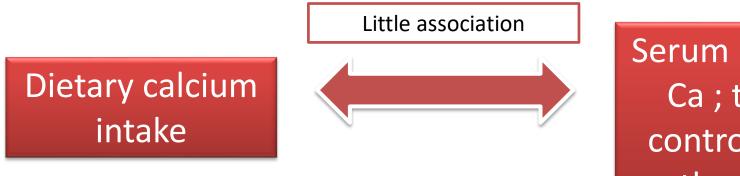
2. Muscle contraction


3. Blood clotting

4. Cell membrane integrity


Calcium in the body

•Cell membranes



Serum calcium fractions

 \uparrow levels in postmenaupausal women \rightarrow marker of low bone mass

Dietary calcium intake and serum calcium levels

Serum levels of Ca ; tightly controlled by the body

Calcium Levels

Hypocalcemia (< 2.3 mmol/l)

- Hypoparathyroidism
- Renal disorders
- Acute pancreatitis

Hypercalcemia (> 2.75 mmol /l)

- 个 intestinal absorption
- Tenal tubular reabsorbtion from :
 - Hyperparathyrodism
 - Hyperthyrodism
 - Hyperavitaminosis D (excessive intake of vitamin D)

Urinary calcium

 More responsive to changes in <u>dietary Ca</u> intake than serum levels

↑ urinary Ca loss	↓ urinary Ca loss
From factors leading to hypercalcemia	From factors leading to hypocalcemia
During day	During night
$igwedge$ protein diet and $igsymbol{\downarrow}$ in phosphate	igta protein diet and $igta$ in phosphate
High urinary output	Renal failure
Impaired kidney's ability to reabsorb Ca	

Biochemical Assessment of Nutritional Status; Protein Assessment

Introduction: Protein Status

Assessing protein status by:

- 1. Anthropometric
- 2. Biochemical
- 3. Clinical
- 4. Dietary

Introduction: Protein Status

Biochemical Models:

Evaluation of Somatic protein
 Within skeletal muscles

Evaluation of Visceral protein
 Within organs or viscera of body, blood cells & Serum protein

Introduction: Protein Status

Somatic + Visceral

= 30-50% of total protein

Contain <u>metabolically available protein</u> body cell mass

- 1. Somatic: 75% of body cell mass
- 2. Visceral: 25% of body cell mass

Assessing Protein Status

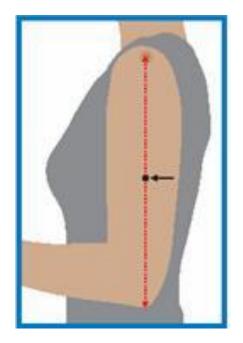
- 1. Body Weight
- 2. Midarm muscle circumference & muscle area
- 3. Creatinine Excretion & C-Height Index
- 4. Nitrogen balance
- 5. Serum protein

Assessing Protein Status

2. Body Weight

Readily obtained indicator of energy & protein reserve.

Limitations:


- Fail to distinguish B/N Fat & Fat free mass
- Losses can be masked by water retention

Assessing Protein Status

3. Midarm muscle circumference & midarm muscle area

Assessing somatic protein status

Creatinine Excretion & C-Height Index

24-hrs urine \rightarrow estimating muscle mass

Creatinine;

product of skeletal muscle (excreted in a **relatively constant proportion** to **the muscle mass**)

Creatinine; 24 hrs urine (mg/kg) of recommended weight		
Male	Female	
23	18	

C-Height Index

$CHI = \frac{24 - hr urine \ creatinine \ (mg) * 100}{Expected 24 - hr urine \ creatinine}$

• Expected 24-hr urine creatinine (table 9.1)

CHI		
60-80 %	Mild protein depletion	
40-60 %	Moderate protein depletion	
<40 %	sever protein depletion	

Creatinine Excretion & C-Height Index

Limitations

- 24- hr urine collection
- Effect of diet on creatinine excretion
 - Long term low protein consumers tend to have lower excretion
- Variability of creatinine excretion
- Use Wt-Ht tables to determine expected creatinine excretion based on sex & stature

Nitrogen balance

Nitrogen balance Nitrogen consumed = Nitrogen excreted

+ve; N intake > N Loss

-ve; N intake < N Loss

Nitrogen balance

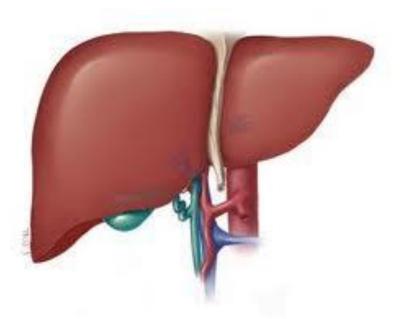
24-hr protein intake measurement Estimate N losses from body

$N_2 balance = \frac{PRO}{6.25} - UUN - 4$

N₂balance = Nitrogen Balance PRO = protein intake (g/24hrs) UUN= UrinUrea Nitrogen (g/24hrs) 4; losses of protein from skin, stool,

Nitrogen balance

Limitations:


- Measuring protein intake & N excretion
- Difficult to account for the <u>unusually high</u> <u>nonunrine nitrogen losses</u> seen in some patients . e.g. burns, vomiting..

<u>Useful in:</u>

- I. Assessing protein status
- II. Determine medical complication risks
- III. Evaluate patient response to nutritional support

• \downarrow serum concentration \leftrightarrow are due to \downarrow Liver production

- ↔as a consequence of ↓
 Supply of a.as
- And decrease in the liver capacity to synthesize serum proteins

Albumin

Serum Protein Used in Nutritional Assessment

Serum protein	Normal Value	Half-life	Notes
<u>Albumin</u>	45 (35-50)	18-20 days	Poor indicator of early protein depletion and repletion (long half life)
NOTE	In addition to protein status, other factors affect it		

Transferrin

Better index of changes in protein status compared with albumin

Serum Protein Used in Nutritional Assessment

Serum	Normal	Half-	Notes
protein	Value	life	
<u>Transferrin</u>	2.3 (6.2-4.3)	8-9 days	 ↑ Pregnancy & estrogen therapy & acute hepatitis ↓ chronic infections, uremia, and acute catabolic status

Transferrin

■ Smaller half life & body pool → better index of changes in protein status than albumin

Prealbumin

Serum Protein Used in Nutritional Assessment

Serum protein	Normal Value	Half- life	NOTES
<u>Prealbumin</u>	0.30 (0.2-0.4)	2-3 days	 ↑ Chronic renal failure & Dialysis, nephrotic syndrome ↓ catabolic state, after surgery, hyperthyroidism

Prealbumin

- More sensitive
- Early stages of malnutrition
- The <u>best</u> for intervention
 - Returns rapidly to the expected level (in response to <u>adequate energy</u> without sufficient protein intake) → not reliable to terminate the nutritional support

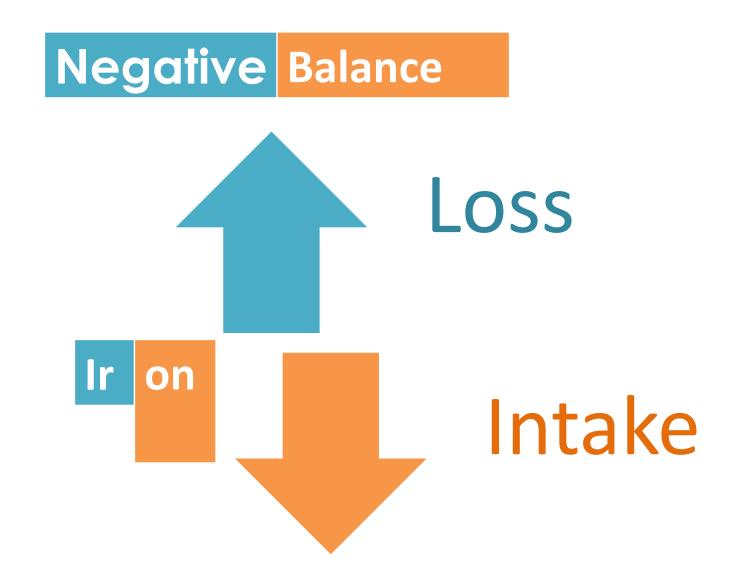
Retinol Binding Protein (act as a carrier for retinol)

Serum Protein Used in Nutritional Assessment			
Serum protein	Normal Value	Half -life	NOTES
<u>RBP</u>	0.372	12 hrs	 ↑ renal disease ↓ vit A deficiency, catabolic state, surgery, hyperthyroidism

Retinol Binding Protein

- Retinol when complexed with prealbumin
- Respond quickly to PEM intervention
- Smaller body pool & half-life
- Like prealbumin : better indicator for recent dietary intake than of overall nutritional status

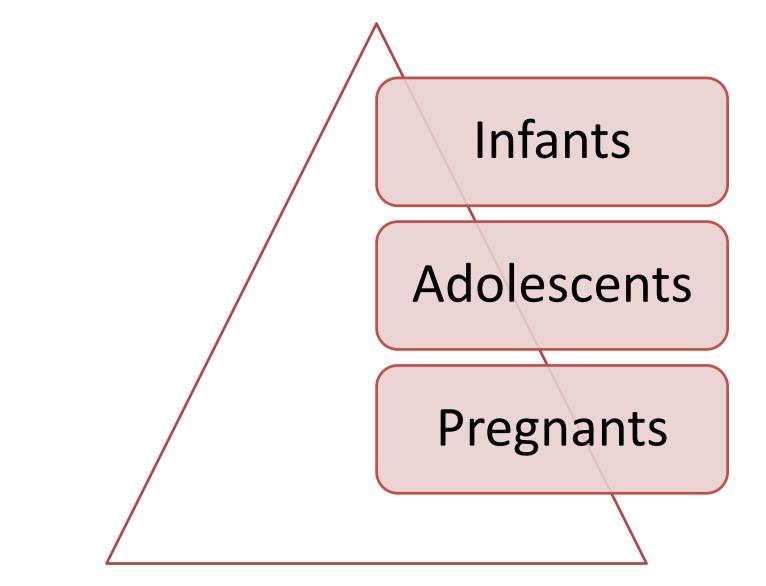
Conclusion


Which one is the best indicator?

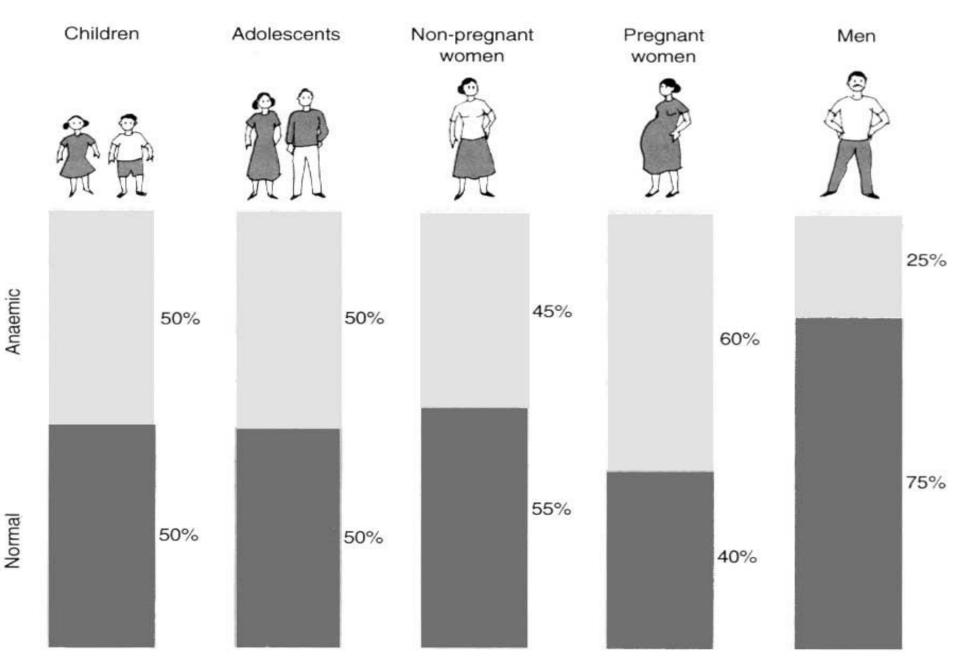
Assessment & Evaluation

What causes Iron Loss?

Heavy menstruation

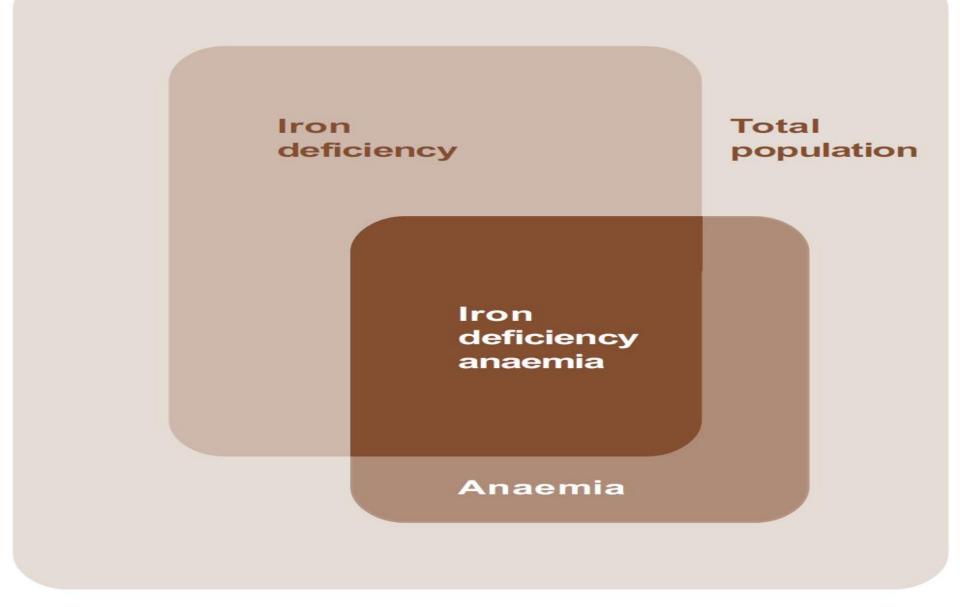

Frequent blood donation

Early feeding of cow's milk to infants


Frequent aspirin use

GI Bleeding

Groups at risk of iron deficiency


Anemia Prevalence among the population 1.1.1

Iron-deficiency anemia

Source: Adapted from Yip R. Iron nutritional status defined. In: Filer IJ, ed. Dietary Iron: birth to two years. New York, Raven Press, 1989:19-36.

Stages of iron deficiency (table 9.3)			
Stage	Descriptive term	Bioche	m. test
1 st	Depleted iron stores	Serum fer	ritin level
		Transf	errin
2 ^{nc} Stage 1 : not associated with a		ith any	tion
	physiological effect	-	cyte rphyrin
3rd	Iron-deficiency anemia	Hemo	globin
		Mean cor volui	•

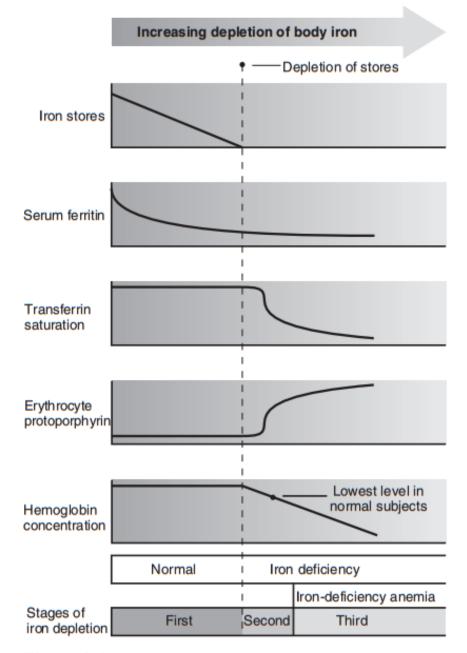
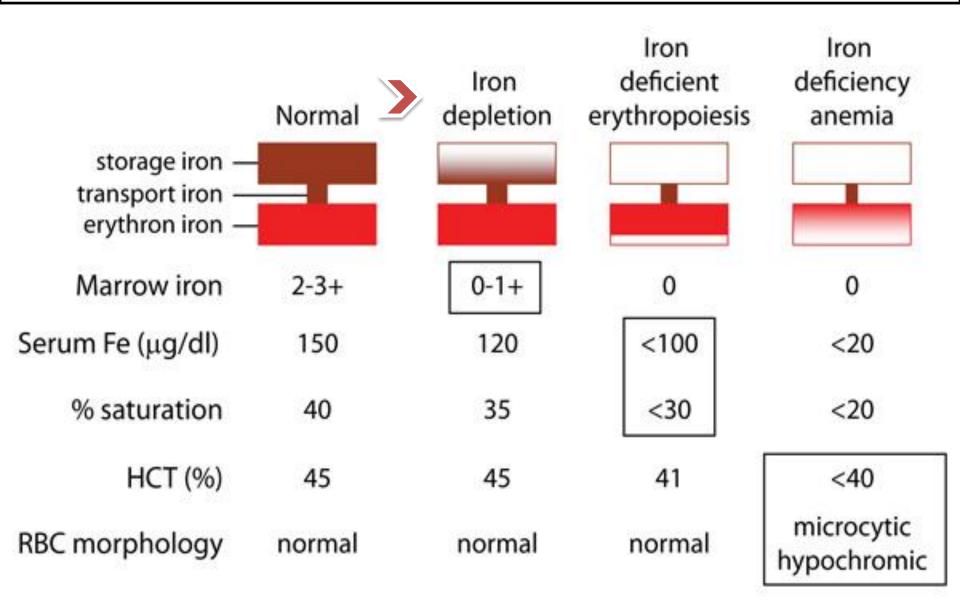


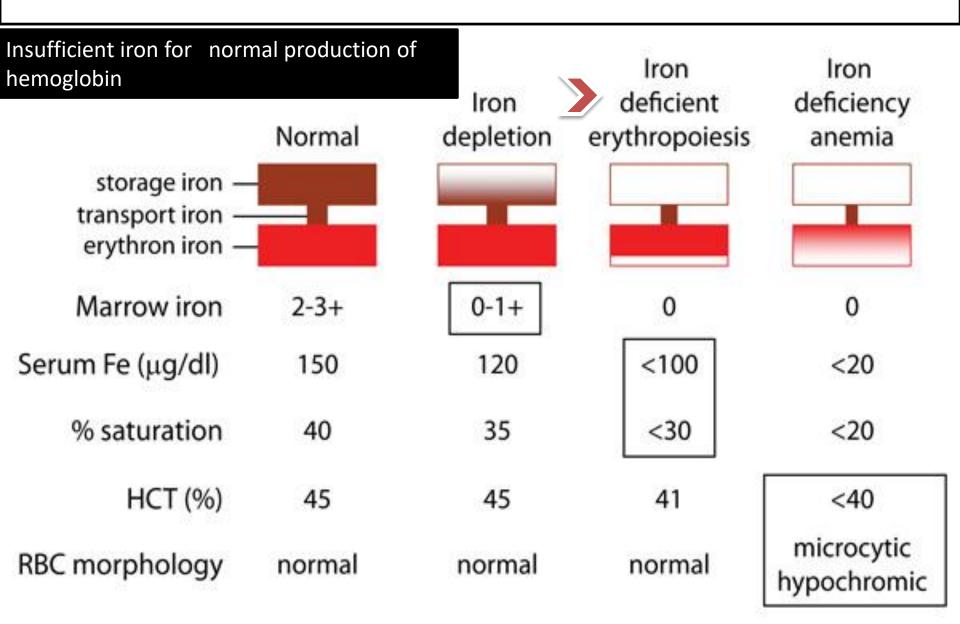
Figure 9.1 Changes in body iron compartments and laboratory assessments of iron status during the stages of iron depletion.



Serum ferritin

Primary Storage form of iron

Liver, Spleen & bone marrow


Stages of iron deficiency 1.1.2

(Table 9.5) Cutoff Values indicative of iron deficiency

Age (yr)	Serum ferritin (mcg/L)
1-2	
3-4	<10
5-10	<10
11-14	<10
15-74	<12

Stages of iron deficiency 1.1.2

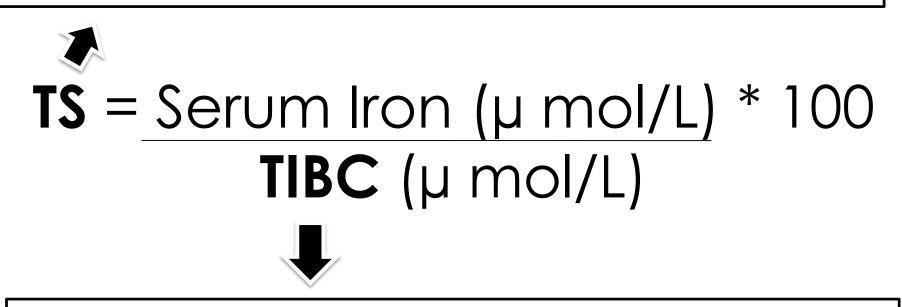
Stages of iron deficiency (table 9.4)

Stage	Descriptive term	Biochem. test
1 s†	Depleted iron stores	Serum ferritin level
2 nd	Iron deficiency	Decreased Transferrin saturation
		Increased Erythrocyte protoporphyrin
3rd	Iron-deficiency anemia	Hemoglobin
		Mean corpuscular

Transferrin

Storage Sites

TRANSPORTATION OF 2 IRON ATOMS


Storage Sites

Placenta

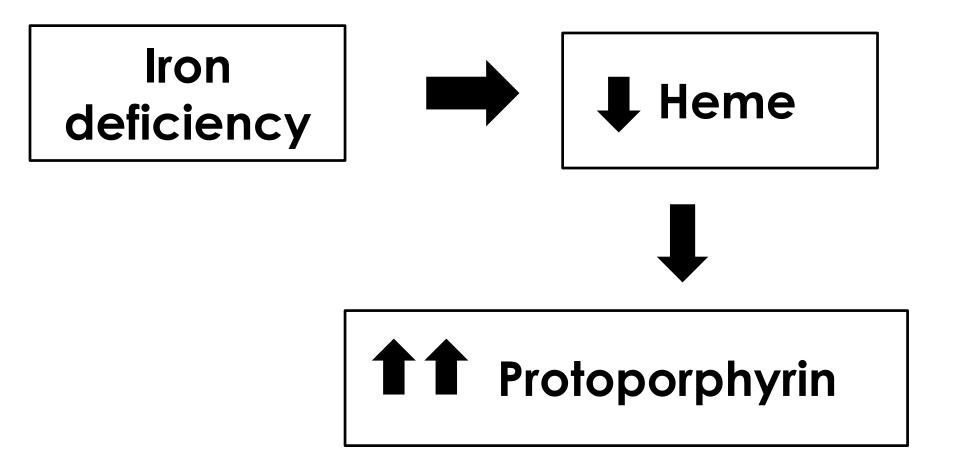
Bone Marrow

Enzymes

Percent of transferrin that is saturated with iron

Measures the amount of iron capable of being bound to serum proteins

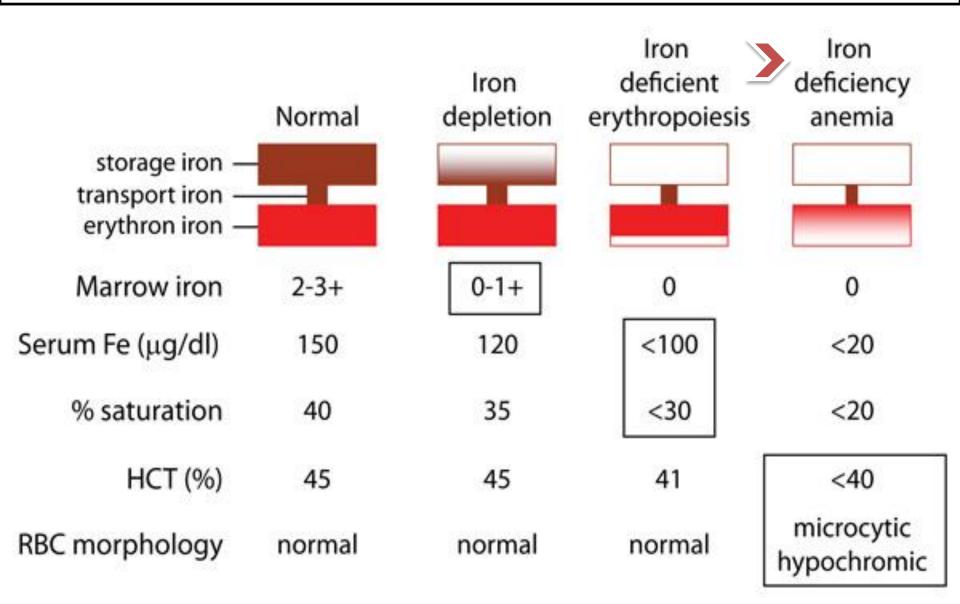
Provides an estimate of serum transferrin


TIBC: Total Iron Binding Capacity

(Table 9.5) Cutoff Values indicative of iron deficiency

Age (yr)	Transferrin Saturation (%)
1-2	<12
3-4	<14
5-10	<15
11-14	<16
15-74	<16

Protoporphyrin


Precursor of heme

(Table 9.5) Cutoff Values indicative of iron deficiency

Age (yr)	Erythrocyte Protoporphyrin (µmol/L RBC)
1-2	>1.42
3-4	>1.33
5-10	>1.24
11-14	>1.24
15-74	>1.24

Stages of iron deficiency 1.1.2

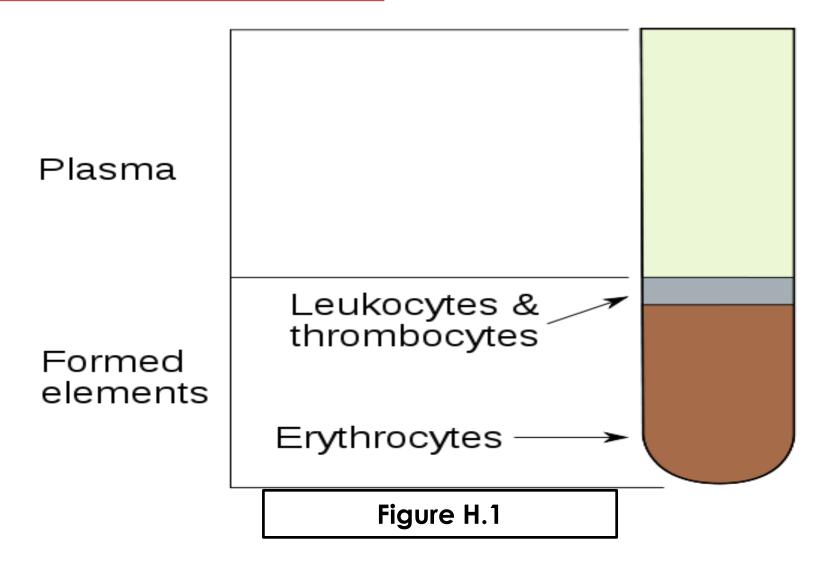
Stages of iron deficiency (table 9.4)

Stage	Descriptive term	Biochem. test
1 s†	Depleted iron stores	Serum ferritin level
2 nd	Iron deficiency	Transferrin saturation
		Erythrocyte protoporphyrin
3 rd	Iron-deficiency anemia	Hemoglobin
		Mean corpuscular volume

Hemoglobin

Measurement of hemoglobin in whole blood is the most widely used screening test for irondeficiency anemia

It depends on the number of RBCs


Gender	Reference value
Men	140-180 g/L
Women	120-160 g/L

Percentage of RBCs making up the entire volume of whole blood

Gender	Reference value
Men	40-54 %
Women	37-47 %

Hematocrit

Hematocrit can be measured manually by comparing the height of whole blood in a capillary tube with the height of RBC column after the tube is centrifuged

Hemoglobin Hematocrit

Are not indicators of an early iron deficiency figure 9.1 page 323

Stages of iron deficiency (table 9.4)

Stage	Descriptive term	Biochem. test
1 s†	Depleted iron stores	Serum ferritin level
2 nd	Iron deficiency	Transferrin saturation
		Erythrocyte protoporphyrin
3 rd	lron-deficiency anemia	Hemoglobin
		Mean corpuscular volume

Mean Corpuscular Hemoglobin

Amount of HG in RBCs MCH (pg) = HG level

RBCs count

Reference value: 26 – 34 pg

It depends on the size of RBCs

Mean Corpuscular Hemoglobin Concentration

MCHC(g/L) = HG value Hematocrit

Reference value: 320 – 360 g/L

Volume of the average RBC

MCV (fL) = Hematocrit RBC count

Reference value: 80 – 100 fL

Factors affecting MCV

Macrocytosis (increasing MCV)

Deficiency of folate

Deficiency of B12

Chronic liver disease

Alcoholism

Cytotoxic chemotherapy

Microcytosis (decreasing MCV)

Chronic iron deficiency

Thalassemia

Anemia of chronic disease

Lead poisoning

(Table 9.5) Cutoff Values indicative of iron deficiency

Age (yr)	MCV (fL)
1-2	<73
3-4	<75
5-10	<76
11-14	<78
15-74	<80

Laboratory Measurements Used in 4 Models for Assessing Iron Deficiency (table 9.6)

Model	Measurement Used
Ferritin model	Serum ferritin Transferrin saturation Erythrocyte protoporphyrin
Mean corpuscular volume (MCV) model	MCV Transferrin saturation Erythrocyte protoporphyrin
Body iron model	Soluble transferrin receptor Serum ferritin

2 out of 3 tests should be abnormal

Overestimation of iron deficiency**

Identifying persons in the 2nd & 3rd stages of iron depletion

2 out of 3 tests should be abnormal

Better than Ferritin model

Identifying persons in the 2nd & 3rd stages of iron depletion

Ferritin Model

MCV Model

Cannot distinguish iron-deficiency anemia from other causes of anemia

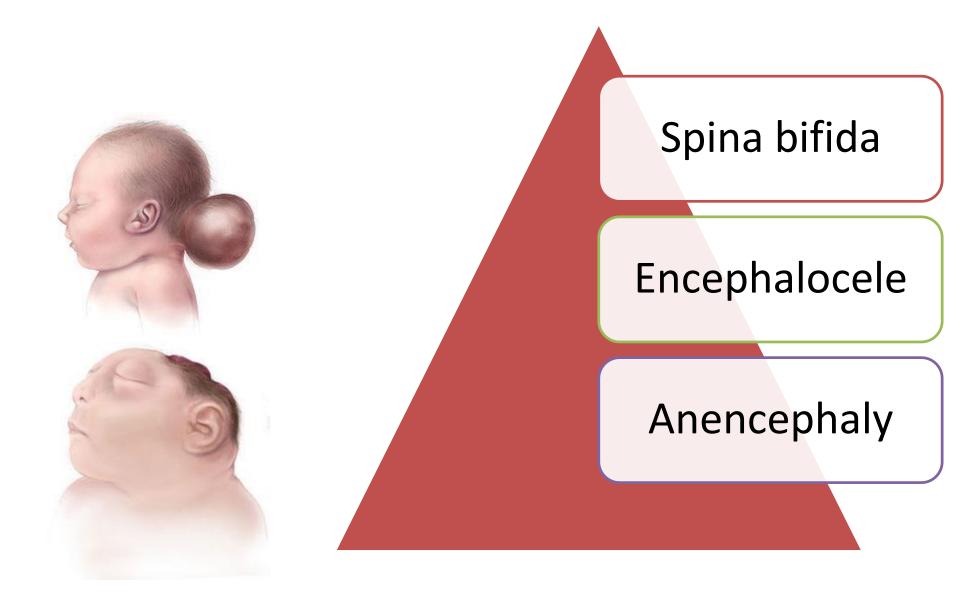
Because they include erythrocyte protroporphyrin as a variable

The body iron model is considered superior because : it is less affected by inflammation it is only two tests

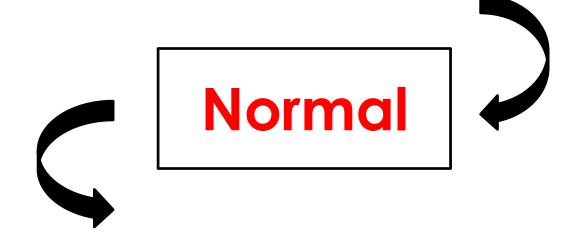
Anemia could be caused by iron deficiency or by inflammation

FOLATE STATUS

Assessment & Evaluation


Folate main function

- Coenzyme in a.a metabolism and nucleic acid synthesis
- Purine and pyrimidine synthesis


Folate deficiency

Inhibition of DNA synthesis
Alteration in protein synthesis

Clinical Features of folate deficiency

Positive homeostasis

Negative homeostasis

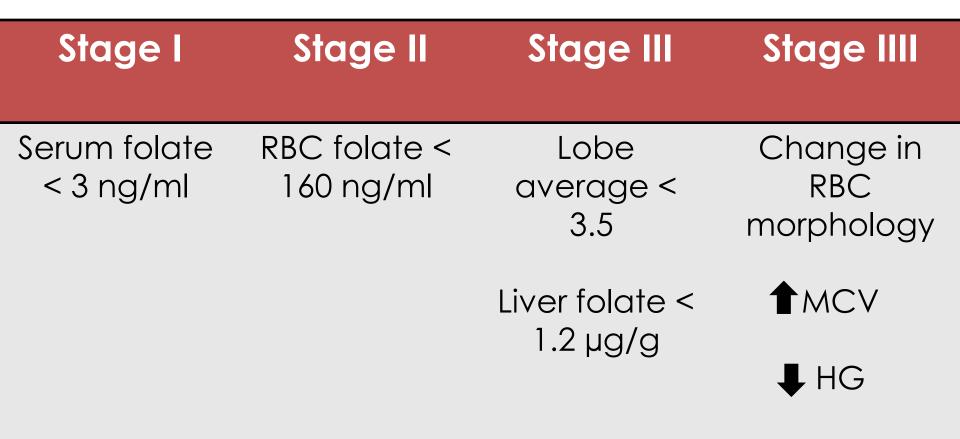

Normal

Table 1.1	Normal
Serum folate (ng/ml)	> 5
RBC folate (ng/ml)	> 200

Positive homeostasis

Table 1.2	Early positive	Excess
Serum folate (ng/ml)	> 10	> 10
RBC folate (ng/ml)	> 300	> 400

Negative homeostasis

Assessment of folate deficiency

Serum Folate

Erythrocyte folate

Deoxyuridine Suppression Test

Fails to differentiate between the chronic and the transient folate deficiency

Erythrocyte folate

Best clinical index of depleted tissue stores

Unlike serum folate, it is **less subject** to transient fluctuations in dietary intake

B12 STATUS

Assessment & Evaluation

Deficiency Symptoms Megaloblastic anemia Nerve degradation

The etiology of deficiency

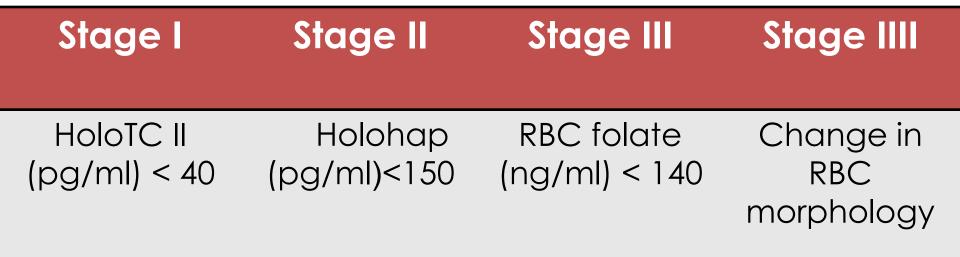
Vegans

Pernicious anemia (inadequate production of intrinsic factors) \rightarrow 95% of cases

Stages of B12 deficiency

Normal

Table 1.1	Normal
Holohap (pg/ml)	> 180
The transport protein of absorbed B12	


Stages of B 12 deficiency

Positive homeostasis

Table A	Early positive	Excess
Holohap (pg/ml)	> 400	> 500

Stages of B12 deficiency

Negative homeostasis

1MCV

↓ HG

Assessment of B12 deficiency

Schilling Test

Oral dose of labeled B12

Amount collected (labeled) is proportional to the amount absorbed

₽

IM injection of non labeled B12

Collection of 24 h urine

Assessment of B12 deficiency

Schilling Test

In pernicious anemia, the content of the administered dose of labeled B12 should be high in the urine specimen (since the body cannot absorb it due to lack of intrinsic factor)